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Chapter 1: Let’s Move! 
 

Introduction 
 

If you haven’t yet read the introduction to this book (pp. iii-v), please do so now. 
 
Physics is fundamental to all of the sciences because it is 

the study of matter and energy and how they interact with one 
another. One of the most important physicists of the 20th century, 
Dr. Richard Feynman, put it this way: 
 

Physics is the most fundamental and all-inclusive of the 
sciences, and has had a profound effect on all scientific 
development. In fact, physics is the present-day equivalent of 
what used to be called natural philosophy, from which most of 
our modern sciences arose. 
(https://www.feynmanlectures.caltech.edu/I_03.html) 
 

Since physics is such a fundamental science, the laws of physics 
govern everything that God has created. As a result, the more 
physics you learn, the better you understand God’s creation. 
 
 In addition, physics is an inherently mathematical subject. 
In fact, that’s why you are taking physics so late in your high 
school career. In order to properly understand physics, you need 
to be well-versed in algebra and geometry. You especially need 
to know three basic trigonometric functions (sine, cosine, and tangent) and understand how they relate to 
a right triangle. If you don’t have that level of mathematics preparation, you should not attempt this 
course. 
 

Let’s Make Sure You Are Ready 
 
 In physics, we make a lot of measurements, and there are some specific concepts that you need to 
understand to make measurements properly and deal with those measurements in mathematical equations. 
If you had a good chemistry course, you already know them, but before we get started on the “meat” of 
this course, I want to review them here. 
 
 When you make a measurement, you must list the units you used. For example, if you want to 
measure the length of something, you could measure it in inches, feet, yards, etc. Those are often called 
the English units of length. You could also measure it in centimeters, meters, or kilometers, which are 
metric units. We will concentrate on metric units, so you need to know the base metric units (meters, 
grams, and seconds) and how they are modified with the prefixes “centi,” “milli,” and “kilo.” We will use 
English units occasionally, so you also need to be able to recognize them. You should also understand that 
the units indicate what was measured. A measurement of 15.0 kilograms, for example, is a mass 
measurement because the base metric unit for mass is the gram, and a kilogram means 1,000 grams.  
 
 There is also a standard set of metric units that are used in the sciences. They are called SI units, 
where “SI” stands for “Système International.” You should already know that the SI unit for mass is the 
kilogram (kg), the SI unit of length is the meter (m), and the SI unit for time is the second (s). You will 
learn many other SI units in this course.  

Dr. Richard Feynman in 1988 
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 When making measurements, you also need to report your answers to the proper precision, which 
is determined by the measuring device you are using. Consider, for example, measuring the length of this 
pencil with a metric ruler: 

 
 

As you should already know, you never start the measurement at the end of the ruler, since it gets damaged 
over time. Thus, you line up the “1 cm” mark with the beginning of the pencil, which means you have to 
subtract one from the number you find at the end of the pencil. Since the numbers represent centimeters, 
and since there are 10 lines between each number, you know the ruler is marked off in tenths of a cm. As 
you should already know, you can estimate between the lines to get to the next decimal place, so this pencil 
is 18.82 cm long. Its length is not 19 cm or 18.8 cm. It is 18.82 cm. You might say 18.81 cm, 18.83 cm, or 
18.84 cm because your estimation might be a bit different from mine. That’s fine. If the pencil had lined 
up perfectly with the eighth mark, its length would be 18.80 cm. Since you are capable of reading the ruler 
to the hundredths of a cm because of your estimation, you must list the value of the hundredths place, 
even if it is zero. 
 

Reporting your measurements with the proper precision is important, since that affects the 
significant figures contained in the measurement. A significant figure is one that was actually measured. 
When you are reading measurements, you can identify the significant figures this way: 

 
1. All non-zero figures (1, 2, 3, 4, 5, 6, 7, 8, and 9) are significant.  
2. A zero is significant if it is between two significant figures. 
3. A zero is also significant if it’s at the end of the number and to the right of the decimal point. 

 

In the measurement 18.80 cm, then, all of the figures are significant. In a measurement like 0.0180 cm, 
however, the first two zeroes are not significant, but the “1,” “8,” and final “0” are. 
 
 Significant figures are important because they tell you how to round your answer when you are 
doing mathematics with measurements. The rules depend on whether you are doing addition/subtraction 
or multiplication/division. 
 

When adding and subtracting measurements, you must report your answer to the same  
precision (decimal place) as the least precise number in the problem. 

 
When multiplying and dividing measurements, you must report your answer with the same 

number of significant figures as the measurement which has the fewest. 
 
Here are examples of how this works: 

 
Example 1.1 

 
What is the proper answer when a measurement of 15.423 cm is subtracted from 102 cm? 
 
First, we can just subtract the two measurements: 
 

102 cm – 15.423 cm = 86.577 cm 
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However, because 102 cm has its last significant figure in the ones place, it is less precise than 15.423, 
which has its last significant figure in the thousandths place. As a result, 102 cm limits the precision of our 
answer to the ones place, so the proper answer is 87 cm. That has the same precision as 102, because they 
each have their last significant figure in the ones place. Also, note that we had to round up, because the 
first number we dropped was a “5.” 
 
What is the proper answer when a measurement of 15.423 cm is divided by 102 cm? 
 
First, we can just divide the two measurements: 
 

15.423 cm  102 cm = 0.151205882353 
 
Depending on your calculator (yes, you should use a calculator in this course), your answer might have 
even more digits in it. That’s fine, since the answer above already has far too many! The measurement of 
15.423 cm has five significant figures, while the measurement 102 cm has three. Since the lowest number 
of significant figures is three, the answer can have only three. The answer, therefore, is 0.151. Remember 
that first zero is not significant, as it doesn’t meet either condition for a zero being significant.     
 
 

 One other thing to notice is how the units work in a mathematical equation. You should already 
know that they act like variables in algebraic equations. Since 2x + 3x = 5x, you can say 2 cm + 3 cm = 5 cm. 
Since 4x  2x = 2 (the x’s cancel), you can say 4 cm  2 cm = 2, because the cm’s cancel. 
 
 You should also be familiar with scientific notation, especially as it relates to significant figures. 
Suppose you are computing the area of a field and measure it to be 5.00 m wide and 90.0 meters long. 
What is the area? When you multiply 5.00 m  90.0 m, you get 450 m2, but since 5.00 and 90.0 both have 
three significant figures, your answer must be reported to three significant figures. However, 450 has only 
two significant figures. The only way to properly report your answer is 4.50102 m2, since being both at the 
end of the number and to the right of the decimal place makes that last zero significant.  
 
 Finally, you need to be able to use the factor-label method to convert units. It’s not enough just 
to convert units. You must be able to use this specific method, since it is a common tool in the sciences. 
To remind you, here is an example: 
 

Example 1.2 
 
An Olympic pool is 50.0 meters in length. How long is that in kilometers? 
 
In order to do a conversion, we need a conversion relationship. The prefix “kilo” means “1,000,” so we 
just write “1 km =” and then replace the prefix with its meaning: 
 

1 km = 1,000 m 
 

Notice how the left-hand side of this conversion relationship has the unit with the prefix (km), while the 
right-hand side has the prefix’s meaning (1,000) followed by the base unit (m). That’s the way you should 
always write the relationship. The 1 goes with the unit that has the prefix, and the definition of the prefix 
goes with the base unit. Now we just put the original measurement over 1 to make it a fraction and 
multiply by another fraction made from the conversion relationship, making sure the m’s cancel: 
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50.0 m
1

ൈ
1 km

1,000 m
ൌ 0.0500 km 

 
There are three significant figures in 50.0 m, and conversion relationships are exact, so they have an 
infinite number of significant figures. Thus, the answer must have three significant figures, which is why it 
is 0.0500 km. 

 
I went through all these concepts quickly, because they should all be review for you. If you are 

confused about any of the things I have discussed, you need to stop reading this book and go to the course 
website, which is discussed in the introduction. There you will find a link to a PDF of the first chapter of 
my chemistry course, which goes over these concepts more slowly. You cannot continue in this course until 
you have mastered the material I covered in this section! 

 
Comprehension Check 

 
1. The density of an object is its mass divided by its volume. What is the density of a rock if it has a mass 
of 3.40102 g and a volume of 1.21510-4 m3? 
 
2. Use the factor-label method to convert 0.0231 g into mg. 
 

 
Sir Isaac Newton 

 
Much of what you will learn from this course comes from the work of one of the greatest 

scientists who ever lived: Sir Isaac Newton. Born on Christmas day in 1642, he was the son of a farmer. 
As he grew into adulthood, his mother tried to get him to be a farmer as well. He hated it, however, so he 
went to Cambridge University and studied mathematics. Since his family wasn’t wealthy, Newton paid for 
his education by working as a servant for the wealthy people at the university. However, he was eventually 

awarded a scholarship so that he no longer had to 
do that. 

 
Over the course of his lifetime, he made 

discoveries in mechanics (the study of motion), 
optics (the study of light), and astronomy (the study 
of the planets and stars). In addition, he was one of 
two people who discovered a new form of math 
(calculus) that he needed in order to understand his 
experiments. These discoveries ended up making 
him quite famous. Queen Anne knighted him in 
1705, and when he died, the English poet 
Alexander Pope wrote the following 
 
      Nature and nature’s laws lay hid in night; 

God said “Let Newton be” and all was light. 
 

Like many great scientists of the past and 
present, Newton was a devout Christian. He spent a 
lot of time studying the Bible, and he actually wrote 
more about his Biblical studies than he did about A portrait of Sir Isaac Newton made in 1689 
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his scientific studies. However, his views were not orthodox. He did not believe in the Trinity, for 
example. As a result, those works did not receive much attention. Nevertheless, he gave God credit in his 
scientific works. For example, while giving his scientific analysis of the solar system, he wrote: 
 

This most beautiful system of the sun, planets, and comets, could only proceed from 
the counsel and dominion of an intelligent and powerful Being…This Being governs 
all things, not as the soul of the world, but as Lord over all… 
(Isaac Newton, Mathematical Principles of Natural Philosophy, Encyclopedia Britannica 
Great Books Series, Vol 34 (1952), pp. 369-370) 

 
Indeed, there are many historians of science and mathematics, like Dr. Morris Kline, who say that 
Newton’s Christian faith was instrumental in guiding his scientific research.  
 

Where Do We Start? 
 
 Newton discovered three laws that govern how things move, and I want you to learn them in 
detail. However, before you can do that, you need to understand some basic terminology related to how 
we keep track of motion. The first thing you need to understand is how we pinpoint the location of an 
object. Suppose you want to meet a friend in the 
park. The park is big, so you arrange a place to meet. 
You might say, “I will be in front of the building that 
has the restrooms in it.” Once you say that, your 
friend knows your position in the park. 
 
 Notice that to give your position, you had to 
use a reference point. In this case, your friend is 
familiar with the building, so the reference point 
makes it easy for him to find you. In actuality, all 
positions depend on a reference point. For example, 
if you have a navigation app on your phone, it uses 
global positioning system (GPS) coordinates to 
determine your position, and those GPS coordinates 
use the intersection of the equator and the prime 
meridian as their reference point. 
 
 Now suppose you and your friend start walking, and in five minutes, you get a call from another 
friend. She heard you were at the park and decided to go there as well. Now she wants to meet up with 
both of you. How would you tell her where to go? If there were no obvious landmarks to guide her, you 
might say, “We are about one-third of a mile from the building with the restrooms.” That would tell your 
friend the distance you are from the building, but that wouldn’t be much help to her, would it? After all, 
to find you, she needs to know the direction in which you walked. To be more helpful, you might say, 
“We are 0.33 miles east of the building with the restrooms.”  That’s more helpful, since it tells her how far 
away you are and in what direction. This is called your displacement from the restroom, and using that, 
she should be able to find you, as long as you wait for her. 
 
 In physics, it is important to distinguish between quantities like displacement and distance. If 
something I measure includes direction, it is a vector (vek’ tor) quantity. If it doesn’t include information 
about direction, it is a scalar (skay’ lur) quantity. Thus, distance is a scalar quantity, while displacement is a 
vector quantity. 
 

The GPS determines your position relative to the reference 
point shown in the illustration.  

GPS 
reference 
point  

equator  

prime meridian  
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Vector quantity – A quantity that includes direction 
 

 Scalar quantity – A quantity that does not include direction 
 
As you progress through this course, you will learn the importance of knowing whether something is a 
scalar or vector quantity. 
 
 It turns out that we can keep track of direction mathematically. That’s why the navigation app in 
your phone is able to guide you to your destination. It knows your displacement from the GPS reference 
point, and it knows your destination’s displacement from the GPS reference point. Since it can keep track 
of the direction mathematically, it can calculate the direction you need to go in order to reach your 
destination. 
 
 How do we keep track of direction using math? It depends on the situation. The more 
complicated the situation, the more complicated the math. To keep it simple at first, I will limit the 
discussion to moving in a straight line. This is called one-dimensional motion. If you think about 
moving in a straight line, you have only two choices for direction. You can move in one direction along 
the line or in the opposite direction. Because there are only two choices, you can represent direction with 
a positive or negative sign. You can define one direction as positive, which makes the opposite direction 
negative. 
 
 Think about meeting your friend at the park. Since you walked east from the building, you could 
call east the positive direction. Thus, you could tell your friend that, defining east as positive, you are 0.33 
miles from the building. Because you defined east as positive and then gave a positive distance, you have 
actually given her a displacement. 
 
 Why is this important? Well, suppose you and the friend you are with decide to walk back towards 
the building to meet up with the friend who just called you. To walk back towards the building, you would 
be walking west. As a result, you would be walking in the negative direction. Suppose you are walking a bit 
more quickly than her, so you end up traveling 0.20 miles west in order to meet up with her. What is your 
new displacement from the building? You can probably figure it out in your head, but you need to think 
through it the way a physicist would. You defined east as positive, so when you got your friend’s call, your 
displacement was 0.33 miles. However, you walked in the opposite direction for 0.20 miles before meeting 
up with her. Thus, you walked -0.20 miles. Your new displacement from the building is: 
 

Total Displacement = 0.33 miles + -0.20 miles = 0.13 miles 
 

Since the total displacement is still positive, you are still east of the building, but you are now 0.13 miles 
east of it, instead of 0.33 miles east. Make sure you understand this by studying the following example and 
then doing the problem that appears after it: 
 

Example 1.3 
 
A ball rolls north on the ground for 12.2 meters. Someone then kicks it, and it rolls 13.2 meters 
south before coming to a halt. What is its displacement from its original starting point?  
 
Once again, you can probably figure this out in your head, but you need to get used to defining direction 
and using it in mathematical problems. So, let’s define north as positive. That means south is negative. 
Before being kicked, then, the ball rolls 12.2 m. It’s positive, because north is positive. After being kicked, 
it rolls -13.2 m. It’s total displacement, then, is: 
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Total Displacement = 12.2 m + -13.2 m = -1.0 m 
 

Since the total displacement is negative, you know that it is 1.0 m south of its starting point. You don’t 
have to include the actual word “south” in your answer, as long as you say that you defined north as 
positive. If you do that, then any positive answer would be north, and any negative answer would be 
south. 
 
 Now please understand that it doesn’t matter which direction is positive, as long as you make sure 
that the other direction is negative. For example, you could define south as positive. Of course, that would 
mean north is negative, so the ball’s initial displacement is -12.2 m, and its displacement after the kick is 
13.2 m, so when you add them together, you get 1.0 m. But now that south is positive, that still means  
1.0 m south. 
 
 Before you finish with this example, though, be sure you understand why the correct answer is  
1.0 m south, and not 1 m south. A mathematician would say that 1.0 m and 1 m are the same, but to a 
scientist, they are very different. The zero at the end of the number and to the right of the decimal is 
significant, which means it has been measured. So 1.0 m south is ten times more precise than 1 meter 
south. How do you know that you must keep that zero? When adding or subtracting, you report your 
answer to the same precision (decimal place) as the least precise number in the problem. Both of those 
numbers have their last significant figure in the tenths place. That means they both have a precision of 
one-tenth of a meter. Thus, your answer must also have a precision of one-tenth of a meter. An answer of 
1 m is precise only to one meter. An answer of 1.0 m is precise to one-tenth of a meter. 

 
 

Comprehension Check 
 
3. A man walks for 570 m west and then turns around and walks 310 m east. What is his displacement 
from his original starting point? 
 
 

Speed and Velocity 
 
 Let’s go back to the park. When the three of you finally meet up, you are 0.13 miles east of the 
building. Suppose the friend who caught up to you says it took her 2.2 minutes to catch up to you after 
she reached the building. She likes to do math in her head, so she wants to calculate the speed at which 
she walked. To do that, she would take the distance she walked and divide it by the time it took her to 
walk that distance. In physics, we would express it this way: 
 

speed ൌ  
∆d
∆t

 

 
The “Δ” is the uppercase Greek letter “Delta,” and it means “change in.” In physics, we often use “d” to 
stand for distance and “t” to stand for “time.” So Equation 1.1 tells you that you can calculate speed by 
taking the change in distance and dividing by the change in time. From the time she was right in front of 
the building, to the time she reached you, 2.2 minutes elapsed. Thus, the change in time was 2.2 minutes. 
This means her speed was: 
 

speed ൌ  
∆d
∆t

 ൌ  
0.13 miles

2.2 minutes
  ൌ  0.059 

miles
minute

 

 

Equation (1.1) 
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Notice how the units in Δd and Δt form the units of the final answer, and notice that both Δd and Δt have 
two significant figures. Since we are dividing, we count significant figures, so the answer must have two as 
well. Neither zero in 0.059 mi/min is significant, since neither is between two significant figures or both at 
the end of the number and to the right of the decimal, so 0.059 also has two significant figures. 
 
 Her speed is interesting, because it tells you how fast she was going. However, it doesn’t tell you 
anything about direction. In other words, it is a scalar quantity. If we used displacement instead of 
distance, we would have direction information, which would give us a vector quantity, which we call 
velocity: 

𝐯 ൌ  
∆𝐱
∆t

 

 
In this equation, v stands for velocity, and Δx stands for change in position, which is the displacement. 
Notice that the v and x are boldfaced. That’s what I will do in this book to show that they are vector 
quantities. Scalar quantities will not be boldfaced, so time is a scalar quantity. It contains no direction 
information. Using Equation 1.2, then, the velocity is: 
 
 

𝐯 ൌ  
∆𝐱
∆t

 ൌ  
0.13 miles east

2.2 minutes
  ൌ  0.059 

miles
minute

 east 
 
Notice that the direction is written after the unit. That’s because velocity is the speed plus the direction. I 
know that in everyday language we use “speed” and “velocity” interchangeably, but they are not 
interchangeable in physics. Speed is a scalar quantity, while velocity is a vector quantity. 
 

Speed is a scalar quantity, while velocity is a vector quantity. 
 
Now remember, you can also denote direction with positive and negative signs. Thus, if we once again 
define east as positive, the velocity can just be reported as 0.059 miles/minute, since positive numbers 
mean the direction is east. Alternatively, had you defined west as positive, the velocity would be -0.059 
miles/minute. 
 

While you might not think the 
distinction between velocity and speed is 
important, it is very important in physics. In 
fact, there are situations in which an object’s 
speed is constant, but its velocity changes. 
Consider, for example a car traveling on an 
oval racetrack. Suppose it travels around the 
track at a constant speed of 90 kilometers 
per hour (km/hr). Obviously, its speed 
doesn’t change, but what about its velocity? 
Look at the illustration on the right, where 
the red letter and arrow tell you which way 
is north. At the top of the oval, the car is 
traveling with a velocity of 90 km/hr west. 
However, on the left side of the oval, it is 
traveling with a velocity of 90 km/hr south. At the bottom of the oval, its velocity is 90 km/hr east, and 
on the right, the velocity is 90 km/hr north. Thus, while its speed stays the same the entire time, its 
velocity changes! In physics, changes in velocity are actually more important than changes in speed, so you 
need to get used to thinking about direction when you are analyzing an object’s velocity.  

Equation (1.2) 

N  

While the speed of this car is the same at all the positions shown in the 
illustration, its velocity is different at each position.  
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 Make sure you understand how to calculate speed and velocity by studying the following example 
and solving the problem that appears after it. 
 

Example 1.4 
 
Remember that at the park, you traveled 0.33 miles east, then turned around, and traveled 0.20 
miles west to meet your friend. Suppose the total time you spent doing this was 8 minutes. What 
was your speed? What about your velocity? 
 
Remember that speed is the change in distance over the change in time. The total distance you traveled was: 
 

Total Distance ൌ  0.33 miles ൅  0.20 miles ൌ  0.53 miles 
 

speed ൌ  
∆d
∆t

 ൌ  
0.53 miles
8 minutes

  ൌ  0.07 
miles

minute
 

 
Notice that since 8 minutes has only one significant figure, the answer can have only one significant figure, 
so your speed is 0.07 miles/minute. 
 
On the other hand, velocity is the change in displacement over the change in time. Remember from before 
that once we defined east as positive your total displacement was 0.13 miles, which means 0.13 miles east. 
That means your velocity was: 
 

𝐯 ൌ  
∆𝐱
∆t

 ൌ  
0.13 miles 
8 minutes

  ൌ  0.02 
miles

minute
  

  
That means your velocity was 0.02 miles/minute. Once again, you can add the word “east” if you like, but 
since we defined east as positive, we know that any positive velocity is east. 

 

 
Comprehension Check 

 
4. A bicyclist rides 4.61 km east. He then stops and rides 4.92 km west. If the trip takes him 0.732 hours, 
what is his speed? What is his velocity? 
 
 
 

Velocity is Relative 
  
 When you are riding in a car and looking out the window, you see trees, houses, stoplights, etc. 
While they seem to be moving past you in a direction opposite of the way you are moving, you “know” 
that you are the one moving and the things you see out the window are not. How do you know that? 
Because you know what a car does, and you know that trees, houses, and stoplights don’t move. Your 
conclusion that you are moving but the things you are looking at are not moving is a result of your 
experience, not a direct result of your senses. To your senses, you are not moving. Instead, the trees, 
houses, and stoplights are moving. 
 
 Now consider a slightly different situation. Suppose you are on an escalator with a friend, and then 
you see another friend who is on the floor at the top of the escalator. He is standing there waving at you. 
Which friend is moving? If you look at your friend on the escalator, she doesn’t seem to be moving. She 
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stays next to you the entire time. You “know” the 
friend who is waving at you is not moving, 
because he is just standing there. However, you 
and your other friend are getting closer and 
closer to him. Once again, which friend is 
moving? 
 
 The answer is that you and both friends are 
moving. It just depends on what your reference 
point is. If you are the reference point, your 
friend on the escalator is not moving, but your 
friend at the top of the escalator is moving 
towards you. However, if your friend at the top 
of the escalator is the reference point, you and 
your friend on the escalator are moving towards 
him, but he is not moving. This is because 
velocity is relative. You cannot determine a 
velocity until you define a reference point relative 
to which you can define the motion. To better 
understand this, I would like you to perform the 
following experiment. 
 

 
Experiment 1.1:  Velocity is Relative 

Materials 
 A paper or Styrofoam cup 
 A stepladder or a place someone can safely stand that is high above the floor or the ground 
 A pen 
 Water 
 A large basin to catch water (if you can’t do the experiment outside) 
 Someone to help you 
 
Instructions 
 
1. Use the pen to poke a hole in the bottom of the cup. The hole should be as big around as the pen. 
2. If the weather is okay, take the stepladder outside and set it up securely on a flat piece of ground. 

Alternatively, find a high place outside from which it is safe to drop things. 
3. If the weather is not okay, set the stepladder on a floor that will be okay if it gets wet. Alternatively, 

find a high place from which it is safe to drop things on a floor that can get wet. Put the basin on the 
floor so that anything you drop will land in it. 

4. Have your helper fill the cup with water, plugging the hole with a finger so that no water will fall out. 
5. With his or her finger continuing to plug the hole, have your helper go to the highest step on the 

stepladder that is safe (or the high place you have chosen). 
6. Have your helper hold the cup so it is in front of him or her and the hole that is being plugged points 

down towards the ground. 
7. If you are doing this indoors, have your helper hold the cup over the basin so that when water leaks 

out of the hole, it will fall into the basin.  
8. Stand in front of your helper on the floor (or ground) so you are facing the cup and can easily see the 

finger your helper is using to plug the hole in the bottom of the cup. 

Relative to each other, these two people are not moving, but they 
are moving relative to anyone standing on the floor at the top or 
bottom of the escalator. 
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9. Have your helper unplug the hole and watch the water start leaking out of the hole and falling down to 
the ground (or into the basin). 

10. After you have watched the water leak out of the hole for just a moment, have your helper plug the 
hole again long before all the water runs out.  

11. Now have your helper release the cup as he unplugs the hole. As the cup falls, keep your eyes on the 
bottom of the cup where water was leaking out. What changes once the cup is in motion? 

12. If you didn’t notice a change, repeat the experiment. You can also record it with a phone camera and 
watch the video. 

13. Clean up any mess that might have been made, and put everything away.  
 

What did you see in the experiment? If it went well, you should have initially seen a stream of 
water falling out of the cup. However, when your helper unplugged the hole and dropped the cup at the 
same time, the water should have stopped falling out of the cup. Why? Let’s take the cup as a reference 
point. When your helper unplugged the hole, water started moving relative to the cup, and it streamed out 
of the hole. However, when your helper dropped the cup, it fell with the water. As a result, relative to the 
cup, the water was no longer moving. Thus, it could not fall out of the hole. 

 
Another way to think about this is to use you as the reference point. When your helper unplugged 

the hole, the cup had a velocity of zero relative to you. However, the water had a velocity directed towards 
you. If we define towards you as the positive 
direction, then, the water had a positive velocity. 
However, when your helper dropped the cup, 
both the cup and the water had the same positive 
velocity. The relative velocity is the difference 
between those two velocities, which would be 
zero. Thus, the relative velocity of the cup and the 
water was zero, so the water did not move relative 
to the cup. 

 
The fact that velocity is relative can be 

very important. Consider, for example, the two 
situations pictured in the illustration on the right. 
In each situation, the two cars are approaching 
each other, but in which case are they approaching 
each other more quickly? Obviously, it’s in the 
situation pictured at the bottom of the 
illustration. Using the concept of relative velocity, 
however, we can say exactly how quickly they are 
approaching one another in each situation. 

 
Let’s start with the situation shown at the top of the illustration. What does the driver in the white 

car see? He sees himself getting closer to the blue car. How quickly is that happening? To answer that, we 
determine the relative velocity. We can do that by subtracting the reference object from the moving object. 
 
                     relative velocity ൌ  velocity of moving object െ  velocity of reference object  

 
Yes, I know, both cars are really moving. However, if we want to know what the driver in the white car 
sees, he is our reference, so we treat him as stationary and the other car as moving. Now remember, 
velocity includes direction, which we denote with positive and negative signs. Let’s define motion to the 
right as positive. In this case, then, both cars have a positive velocity, since they are both moving to the 

In both situations, the cars are approaching each other. 
However, they are approaching each other more quickly in the 
situation shown at the bottom. 

55 mi/hr 61 mi/hr 

55 mi/hr 61 mi/hr 

Equation (1.3) 
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right. Since the white car’s velocity is 61 mi/hr, while the blue car’s velocity is 55 mi/hr. The relative 
velocity, then, is: 

Relative velocity ൌ  55 
mi
hr

 െ  61 
mi
hr

 ൌ  െ6 
mi
hr

 
 

What does that mean? Remember, we are using the white car as our reference. So that means the white car 
sees the blue car traveling to the left (towards him) at 6 miles per hour. This would be the same as the 
white car sitting still, and the blue car traveling towards it at 6 miles per hour. Note that since we are 
subtracting, we look at precision to determine how to report our answer. Both numbers have their last 
significant figure in the ones place, so the answer must be reported to the ones place. That’s why it is -6 
mi/hr and not -6.0 miles/hr. 
 
 Now remember, since velocity is relative, we can look at this from the blue car driver’s perspective 
as well. The velocities haven’t changed, so using the blue car as a reference and continuing to define 
motion to the right as positive, the relative velocity is: 
 

Relative velocity ൌ  61 
mi
hr

 െ  55 
mi
hr

 ൌ  6 
mi
hr

 
 

So the driver of the blue car sees the white car moving to the right (towards her) at 6 miles per hour. This 
is the same as a situation in which the blue car is sitting still, and the white car is moving towards it at 6 
miles per hour. In fact, from a physics point of view, the situation pictured in the top part of the 
illustration is the same as a situation in which the white car is sitting still, and the blue car is moving left 
(towards it) at 6 miles per hour. It is also the same as a situation in which the blue car is sitting still and the 
white car is moving right (towards it) at 6 miles per hour. 
 
 Now let’s think about the bottom situation. In that case, the white car still has a velocity of 61 
mi/hr. However, the blue car is moving to the left, so its velocity is -55 mi/hr. Using the white car as a 
reference, then: 

Relative velocity ൌ  െ55 
mi
hr

 െ  61 
mi
hr

 ൌ  െ116 
mi
hr

 
 

This means relative to the white car, the blue car is moving to the left (towards it) at 116 mi/hr. Similarly, 
from the blue car’s perspective: 
 

Relative velocity ൌ  61 
mi
hr

 െ  െ55 
mi
hr

 ൌ  116 
mi
hr

 
 

So relative to the blue car, the white car is traveling to the right (towards it) at 116 miles per hour. Make 
sure you can analyze this kind of situation by solving the problem below. 

 
Comprehension Check 

 
5. In a long-distance race, the runner in the lead has a velocity of 2.9 m/s west. The runner in second place 
has a velocity of 2.8 m/s west. What is the velocity of the runner in second place relative to the runner in 
the lead? 
 
 

Relating Velocity and Displacement 
 
 Since Equation (1.2) uses the displacement and the change in time to determine v, we can use it 
(and our algebra skills) to determine any one of those quantities if we are given the other two. This can be 
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an important part of analyzing physical situations, so I want to make sure you understand how to do it by 
studying the following example problem. 
 

Example 1.5 
 
A car is traveling with a velocity of 16.4 m/s south. If it must end up 3.4 km south of its present 
location, how long will it have to travel? 
 
Now remember, I don’t always have to tell you the physical quantity that is being measured. The units (and 
the presence or absence of a direction) will tell you. I told you that 16.4 m/s south was the velocity, but I 
didn’t need to identify it. The unit (m/s) tells you that a speed or velocity was measured, and the direction 
tells you it’s velocity. I didn’t tell you what 3.4 km south is, but the unit does. The unit tells you it is either 
distance or displacement, because that’s what meters (or any prefix with meters) measure. Since there is 
also a direction, you know I gave you the displacement. 
 
Units are important for another reason as well. If you look at the problem, the distance unit used in the 
value of velocity is m, which stands for meters. The unit for the displacement is km, which stands for 
kilometers. Those two units are inconsistent. They both measure displacement, but they aren’t the same 
measure. When we do math, we need to make sure that all the units are consistent with one another. Thus, 
every displacement unit must be either meters or kilometers. As a result, I will need to change one of the 
units to make it consistent with the other one. I will change km into m, since that’s a bit easier than turning 
m/s into km/s. 
 

 
3.4 km

1
  

1,000 m
1 km

 ൌ  3,400 m 
 

This is one of the many reasons you need to understand how to convert units. You will be doing it a lot 
when you solve problems. 
 
Now that we have the units consistent, we can continue. Defining south as positive makes both the 
velocity and displacement positive, which means Equation (1.2) becomes 
   

𝐯 ൌ  
∆𝐱
∆t

 

 

16.4 
m
s

  ൌ  
3,400 m

∆t
 

 

We can now use algebra to solve for Δt: 
 

∆t  ൌ  
3,400 m

16.4 m
s

 ൌ  210 
1
1
s

 ൌ 210 𝑠 

 

Notice that since we are dividing, we must count significant figures. 3,400 m has two, while 16.4 m/s has 
three, so the answer can only be reported to two significant figures, which is why I rounded the answer 
(207.317…) to 210. Also, look at the units. The meters cancel, which is why they had to be made 
consistent with one another. That leaves a complicated fraction. If you don’t understand why that fraction 

works out to seconds, think about how we divide by a fraction. We invert and multiply. Thus, 1÷ 
ଵ

ୱ
 is the 

same as 1ୱ
ଵ
, which works out to s.  
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 That was a pretty simple problem, but I wanted to show you how to solve it so you could get used 
to one of the common things we must do when analyzing physical situations – making sure the units agree. 
This is very important 
 

Before solving a problem, look at the units and make sure they are consistent.  
If they are not, convert the inconsistent units before you continue. 

 
Now let’s look at what appears to be a more difficult problem. 
 

Example 1.6 
 

Two toy cars move on a track. The lead one travels at 1.5 m/s west, while the one behind is 
traveling at 1.6 m/s west. If they collide after 1.1 minutes, how far apart were they initially? 
 
I didn’t have to tell you that I was giving velocities, since the units and directions tell you what they are. 
Based on the velocities, you can tell that the car behind will slowly catch up to the car in front. You might 
think this is a hard problem to solve, since both cars are moving. However, remember that since velocity is 
relative, you can treat this problem as if one car is sitting still, and the other one is moving at the cars’ 
relative velocity. That makes everything easy! So let’s treat the car in front as if is sitting still. If that’s the 
case, the car behind will be moving at the relative velocity. We have to define a direction, so let’s say that 
motion to the west is positive, since both cars are moving that way. 
 

Relative velocity ൌ  Velocity of moving object െ  Velocity of reference object 
 

Relative velocity ൌ  1.6 
m
s

 െ  1.5 
m
s

 ൌ  0.1 
m
s

 
 

Since we are subtracting, we look at the decimal place of the numbers. Both of them have their last 
significant figure in the tenths place, so the answer must have its last significant figure in the tenths place 
as well. 
 
So this situation is equivalent to the front car sitting still, and the other car approaching it at a velocity of 
0.1 m/s west. Since we know the time, we can use Equation (1.2) to determine the displacement that the 
car experiences. However, we need the units to be consistent, and they are not. The time unit in the 
velocity is seconds, while the time it takes for them to collide is in minutes. Thus, we need to convert. I 
will convert minutes to seconds: 

 
1.1 min

1
  

60 s
1 min

 ൌ  66 s 
 

Remember, the conversion relationship is exact, so it has infinite significant figures. Thus, 1.1 limits the 
answer to two significant figures. Now we can use Equation (1.2): 
 

𝐯 ൌ  
∆𝐱
∆t

 

 

0.1 
m
s

  ൌ  
∆𝐱

66 s
 

We can now use algebra to solve for Δx: 
 

∆𝐱  ൌ 0.1
m
s

  66 s ൌ  7 m 
 

Since we are multiplying here, we must count significant figures. 0.1 m has one, while 66 s has two, so the 
answer can have only one. Notice also that the unit of seconds cancels, which is why we get a proper unit 
for the displacement. Finally, we could have used the rear car as the reference, and we would have gotten 
the same answer. 
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Make sure you understand what you just read by solving the two problems below. 
 

Comprehension Check 
 
6. A runner is moving east at 3.45 m/s. After 4.0 minutes, what will be his displacement? 
 
7. Two trains are on the same track. One is traveling at 23 m/s east and the other at 19 m/s west. If the 
first train is 16.5 km west of the second, how long before they collide? 

 
Newton’s First Law of Motion 

 
 Suppose you are walking down the sidewalk and you see a 
rock, so you kick it. It will bounce down the sidewalk for a while, but 
it will eventually come to rest, right? The same thing happens when 
you throw a ball. It will move in the direction you threw it for a while, 
but it will eventually come to rest. In general, we can make things 
move, but eventually, they stop moving. This led Aristotle, an 
important philosopher who lived in the 4th century BC, to conclude 
that objects here on earth “prefer” to be at rest. You can force them 
out of their preferred state for a while, but they will eventually end up 
back in their preferred state – at rest. 
 
 Aristotle was such an important philosopher that this view 
was the dominant view among scientists (they were called “natural 
philosophers” back then) for about 2,000 years! While a few natural 
philosophers argued against it over the years, the one who definitively 
showed it to be wrong was Galileo Galilei (1564-1642), a devout 
Christian who studied both Scripture and science so that he could 
learn as much about God as possible. Indeed, in a letter he wrote to 
the Grand Duchess of Tuscany in 1615, he stated, “…for the holy Bible and the phenomena of nature 
proceed alike from the divine Word, the former as the dictate of the Holy Ghost and the latter as the 
observant executrix of God’s commands.”  
 
 The experiments and reasoning he used to contradict Aristotle 
are worth learning, because they show you how a good physicist 
interprets experiments. He started by rolling a smooth ball down a 
smooth ramp and then up another smooth ramp. He noted that if the 
ramps and ball were smooth enough, the ball would roll down the 
first ramp and then roll up the second ramp until it reached the height 
from which it was first released. Interestingly enough, this was 
independent of the slope of the second ramp. No matter how far the 
ball had to travel along the second ramp, it would continue to travel 
until it reached the original height from which it was released, as 
shown in the illustration on the right. This led Galileo to reason that if 
there were no ramp for the ball to roll up, the ball would continue to 
roll forever. In practice, of course, that wouldn’t happen, because 
friction would eventually stop the ball. However, Galileo made the 
ball and ramps very smooth to reduce the effect of friction. That way, 
he could reason through what would happen if friction didn’t exist. 

This portrait of Galileo Galilei is 
thought to be among the last painted 
before his death in 1642.  

An illustration of Galileo’s experiment 
that contradicted Aristotle 

ball starts 
at a certain 
height 

ball rolls to that 
same height, 
regardless of 
how steep the 
second slope is 

ball just 
keeps rolling 
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 Based on his experiments, then, Galileo decided that the only reason objects seem to have a 
preferred state is because there is a force called friction between the object and what it is moving on or 
moving through. Friction slows the object down until it stops. However, if friction weren’t there, an object 
that was in motion would just continue in motion forever. 
 
 Newton used Galileo’s experiments and a few of his own to state what we now call Newton’s 
First Law of motion. 
 

An object at rest or moving with a constant velocity will  
continue in that state until acted on by a net force. 

 
In other words, if nothing pushes or pulls on an object, its velocity will not change. If you are confused 
about the word “net,” don’t worry about it. As you will learn later, forces can add to one another, which 
means that two equal but opposite forces can cancel each other out. If there are a lot of forces acting on 
an object, but they all cancel each other out, there is no net force, so the object behaves as if there is no 
force acting on it at all. You will learn more about that in the next chapter. 

 
Experiment 1.2:  Newton’s First Law 

Materials 
 A rectangular baking pan or a tray with a lip running around the edge 
 A large, heavy book or stack of books 
 A marble or small ball, like a golf ball 
 A smooth, flat counter 
 
Instructions 
1. Rest the baking pan on the counter so that it has plenty of room to slide to the right. 
2. Put the books or stack of books about a meter (three feet) to the right of the tray. If the counter isn’t 

quite that long, just leave as much space as possible between the book and the tray. 
3. Put the ball in the pan so it rests against the left wall of the pan or the left lip of the tray, as shown in 

the illustration below. 

 
4. Put your left hand on the left side of the pan and use it to push the baking pan along the counter to 

the right (towards the book) at a steady speed. Don’t move it too quickly, because you want the book 
to stop its motion. 

5. Observe what happens to the ball when the baking pan’s motion is stopped by the book. 
6. Reset the tray to where it was originally. 
7. Remove the book from the counter. 
8. Put the ball in the tray so that it rests against the right wall of the baking pan or right lip of the tray, as 

shown in the illustrations below. 

 
9. Once again, put your left hand on the left wall (or lip) and push the pan or tray to the right as quickly 

as you can without losing control. What does the ball do this time? 
10. Put everything away, but make sure you know where the ball is, because you will use it in another short 

experiment later on. 

push  

push  

pan  ball  

ball  
pan  
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What happened in the experiment? As you slid the tray across the counter in the first part of the 
experiment, the ball moved with the baking pan, but when the pan was stopped by the book, the ball kept 
rolling, didn’t it? That’s because the ball and pan were originally at rest, but you applied a force to the tray, 
which caused the tray to start moving to the right. The wall of the pan (or the lip of the tray) applied a 
force to the ball, causing it to move with the pan (or tray). The book applied a force to the pan, which 
stopped the pan. However, there was nothing to apply a force to the ball. Thus, as Newton’s First Law 
requires, the ball continued on with the same velocity. As a result, it started rolling until the other side of 
the pan could apply a force to change its motion. 

 
In the second part of the experiment, the ball rolled to the left in the pan as soon as you started 

moving the pan to the right. That’s because the tray and the ball were at rest. You applied a force to the 
pan to make it move, but the ball had nothing to apply a force on it. Thus, it stayed at rest. Since the pan 
was moving right and the ball was at rest, the ball seemed to be rolling to the left inside the pan. However, 
it was at rest relative to the counter. Once again, this is exactly what Newton’s First Law requires. 

 
In actuality, of course, there was a force acting on the ball. It is the friction that Galileo recognized, 

and it exists whenever an object tries to move in or on something.  
 

Friction – A force that resists motion when two bodies are in contact 
 
In this case, the ball and pan were in contact. That means there was friction, which resisted any relative 
motion between them. However, that force was small. As a result, when the ball had a velocity to the right 
in the first part of the experiment, friction wasn’t able to effectively resist any relative motion. Thus, when 
the pan stopped, the ball continued to move to the right, at very close to the same velocity it originally had. 
In the same way, in the second part of the experiment, the ball was being pushed to the right a bit by 
friction so as to stop any relative velocity between the ball and the pan. However, it wasn’t strong enough, 
so the ball acted as if its velocity remained pretty much zero when the pan started to move. 

 
Of course, Newton’s First Law has many implications. For example, it’s the reason you need to 

wear a seat belt when you are in a moving vehicle. If the vehicle comes to a stop, you will continue moving 
with the forward velocity you had while the car was in motion. If the stop is slow, the friction between you 
and your seat will be strong enough to slow you down with the car. However, if the stop is sudden, 
friction will not be strong enough to slow you down much, and like the ball in the first part of your 
experiment, you will continue to move forward. This can cause you to be thrown against the dashboard, or 
worse yet, the windshield. However, a seat belt will be able to exert a strong enough force to stop your 
forward motion, saving you from serious injury. 

 
 Now remember, most objects eventually come to rest regardless of their velocity, because friction 
is a force that slows them down, eventually stopping them. However, if you get rid of friction, that doesn’t 
happen. While it’s hard to get rid of friction here on earth (even air produces friction against anything 
moving through it), there is very little friction in space. As a result, objects that have been given a velocity 
in space continue to move with that velocity for a long, long time.  
 

Consider, for example, the robotic Voyager spacecrafts. Voyager 2 was launched from earth on 
August 20, 1977. Slightly more than two weeks later, Voyager 1 was launched. They used most of their fuel 
just to leave the earth and be put on course, but since then, they have used very little fuel. After all, since 
there is very little friction in space, there is hardly any force acting on them. As a result, they have been 
traveling with the same velocity since they stopped using their fuel for propulsion in 1989. Now, more 
than 30 years later, they are still traveling with pretty much the same velocity because of Newton’s First 
law. In fact, they have been traveling for so long that they have actually left our solar system and are now 
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traveling through interstellar space! They are the only human-made objects that have left the solar system. 
They don’t need anything pushing them as they travel. They continue to move because of Newton’s First 
Law. 

 Now, of course, in order for them 
to continue to gather data and 
communicate it back to us, they must have 
electrical power for their instruments and 
communication equipment. They get that 
from a generator which turns the heat 
produced by the decay of a radioactive 
substance into electricity. However, the 
radioactive substance will eventually run 
out of sufficient energy to power the 
electrical systems, and while the 
spacecrafts will still be traveling through 
space, we will lose contact with them. 
Current indications are that the scientific 
instruments will not have enough power 
to operate starting in about 2025, but the 
communication systems might be able to 
last about 10 years beyond that. 

 
  

Comprehension Check 
 
8. Suppose you are sitting in a plane that is coasting along. Suddenly, the plane drops a few hundred feet 
without warning. If you aren’t wearing your seat belt, in what direction relative to the seat will you travel? 
 
9. Two identical blocks traveling on two different flat surfaces are given the same velocity. Block A comes 
to rest in 2.1 meters, while block B comes to rest in 1.7 m. Which experienced a weaker frictional force? 

 
This Can Be a Bit Tricky! 

 
 While Newton’s First Law makes sense when it is explained, sometimes it is hard to understand 
how it applies in certain situations. Consider, for example, a satellite that is orbiting the earth. Most 
satellites move relative to the earth’s surface so that they can view different parts of the earth at different 
times. However, there are geosynchronous (jee oh’ sin kruh’ nus) satellites that stay above the same part 
of the earth all the time. In other words, relative to some fixed point on the planet, they never move. Many 
communication satellites are like this so that you always know how to orient your antenna so that it points 
directly to the satellite. 
 
 Even though a geosynchronous satellite never moves relative to a fixed point on the earth’s 
surface, it still moves relative to the center of the earth. That’s because the earth rotates, so to stay above 
the same spot, the satellite must move with that rotation. Thus, because every fixed point on the earth 
must make one full circle every 24 hours, a geosynchronous satellite must make one full orbit every 24 
hours. That means it is moving in its orbit at a constant speed. 
 
 Now let me ask you a question. Is the satellite experiencing a net force? You might be tempted to 
say “no.” After all, Newton’s First Law says that a net force will change an object’s velocity. Since the 

An artist’s conception of one of the Voyager spacecrafts observing the 
solar system from outside. The yellow circles represent the orbits of 
Jupiter, Saturn, Uranus, and Neptune around the sun.  
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satellite’s speed is not changing, you might be tempted to say there is no force. However, you would be 
wrong, because speed is not velocity. Velocity includes direction. Even though the satellite is traveling at a 
constant speed, it is continually changing direction in order to keep traveling in a circle. As a result, its 
velocity is continually changing. To understand what I mean, perform the following experiment. 

 
Experiment 1.3:  Motion in a Circle 

Materials 
 A marble or small ball, like a golf ball 
 A smooth floor (A carpeted floor will work, as long as the carpet is reasonably smooth) 
 A circular container that is either glass or plastic (You need to be able to see the ball through the 

bottom of the container. You don’t need to see it really clearly – you just need to see it.) 
 

Instructions 
1. Put the ball on the floor. 
2. Turn the container upside down and place it over the ball so that the ball rests against the side. 
3. Move the container so that the ball inside starts traveling in a circle against the side of the container. 

Get it going as fast as you can. 
4. Stop moving the bowl and watch the ball. It should continue to travel in a circle until friction brings it 

to a halt. 
5. Repeat step 3 to get the ball moving in the circle again. 
6. Stop moving the bowl, but as you watch the ball, lift the bowl straight up in the air while you continue 

to watch the ball. How does the ball travel after you lift the bowl? 
7. Repeat steps 5 and 6 a couple more times. Each time, note how the ball moves once the bowl is lifted. 
8. Put everything away. 
 

What did you see in the experiment? As long as the container was there, the ball would travel in a 
circle. However, as soon as you lifted the container, what happened? The ball started traveling in a straight 
line. Why? Because of Newton’s First Law. The only reason the ball traveled in a circle to begin with was 
because the container was exerting a force on the ball. That might have been obvious when you used the 
container to get the ball moving. However, once you stopped moving the container, it was still exerting a 
force on the ball. That force kept changing the ball’s direction, which means it was changing the ball’s 
velocity. When you lifted the container up, the ball no longer had a net force acting on it, so it traveled 
with a constant velocity, which means it started moving in one direction.  

 
This is true for anything that travels in a circle. So the geosynchronous satellite I mentioned 

previously is also being acted on by a force that keeps changing its direction so that it doesn’t move in a 
straight line; it moves in a circle. What is that force? It’s the force of gravity. Without the gravitational 
attraction between the satellite and the earth, the satellite would move in a straight line, because there 
would be no force to change its velocity. We will examine this in much more detail when we discuss 
gravity and how it works. For right now, you just have to realize that gravity is the force that keeps the 
satellite from traveling off into space like the Voyager spacecrafts continue to do. 
 
 Let’s think through one more tricky situation. Suppose you are piloting a bomber, and your 
mission is to drop bombs on an enemy city. Your bomber is flying due west at 900 kilometers per hour. 
You see from your navigation equipment that you are approaching the city. The bombs you are going to 
drop have no propulsion system of their own; they just drop like rocks (okay, like explosive rocks) when you 
release them. When should you let the bombs drop? 
 
 Well, you know that gravity pulls things down, so when you release the bombs, you expect them to 
fall down. That expectation is valid. However, they start moving down because a force (the force of 
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gravity) changes their downward velocity from 0 to something nonzero. However, the bombs are traveling 
with you in your bomber. As a result, they have a westward velocity as well. They will continue with that 
westward velocity unless some force changes it. You might think the force of gravity will change the 
westward velocity, but it can’t; it only pulls down. Thus, it changes the downward velocity from zero to 
something large. However, it doesn’t change the westward velocity, because it doesn’t push or pull in that 
direction. As a result, the bombs will continue to travel with their westward velocity. 
 
 So when should you release the bombs? If you wait until you are above the city to release them, 
they will continue to travel west as they fall, hitting the ground west of the city. You should release them 
when you are east of the city. That way, as they fall, they will continue to travel westward with the bomber 
as they also start traveling downward due to the force of gravity. If you time it right, they will hit the 

ground at the moment they have traveled far 
enough west to hit the city.  
 
 To make sure you understand this, look at 
the picture on the left. It was taken while the U.S. 
8th Air Force bombed Dresden, Germany’s 
railway center on April 17, 1945. Look at the trail 
of bombs beneath each plane. The bottom bomb 
in each line was dropped before the top bomb, 
yet all the bombs from each bomber are still 
directly below the bomber. That’s because as the 
bombs dropped, they were still traveling with the 
speed they had while they were in the bomber. 
Since the bomber continued with that speed, all 
the bombs kept up with the bomber, no matter 
how long they had been falling! 
  

 Now once again, there is still friction in this situation. Air resists motion through it, so the bombs 
are slowed down a bit by friction. However, they are designed to reduce that friction, and while it does 
slow them down a bit, they aren’t in the air for very long, so the effect is small. Nevertheless, it can be 
accounted for if you are looking for a precision strike. 
 
 Before I leave this discussion, I do want to introduce one bit of terminology. Newton’s First Law 
tells us that objects stay at their present velocity unless acted on by an outside force. In other words, they 
resist changes to their velocity. That is often called inertia (ih nur’ shuh).  
 

Inertia – The tendency of a body to resist changes in its velocity 
 

How do objects “resist” these changes? I will discuss that in the next chapter. For right now, just 
understand that inertia is often used as a way to refer to Newton’s First Law. For example, you could say 
that the bombs in the photo above are all lined up under their bombers because of each bomb’s inertia. 
Each bomb resists changes to the velocity it had while in the bomber, so it kept up with the bomber as it 
fell. Because of this, Newton’s First Law is often called the Law of Inertia. 

  
Comprehension Check 

 
10. Suppose you shoot an arrow straight up while riding in the back of a pickup truck that is traveling 
down the road at a constant velocity. Ignoring friction, where will the arrow land when it comes back 
down? 

Each bomb that is dropped continues to travel with its bomber 
because of Newton’s First Law. Thus, they keep up with the 
bomber’s velocity as they fall.  
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Change Is a Part of Life 
 

Newton’s First Law tells us that an object’s velocity doesn’t change unless there is a net force 
acting on it. Of course, that happens all the time, because there are a lot of things that can exert forces on 
objects. When you kick a rock, you are exerting a force on it, so the rock’s velocity changes. When you 
catch a ball, you are exerting a force to stop it, so once again, its velocity changes. Thus, we need to start 
thinking about the details of how velocity changes. To start the process, perform the following 
experiment. 

 
Experiment 1.4:  Changing Velocity 

Materials 
 Several hardcover books with different thicknesses (One of them should be the thinnest hardcover 

book you have.) 
 A marble or other small ball, like a golf ball 
 A meterstick or measuring tape 
 A smooth floor (It can be carpeted.) 
 A stopwatch or any other timing device that can read to at least the tenth of a second 
 

Instructions 
1. Find a portion of the floor that is clear for about two meters and ends at a wall. 
2. Lay the thinnest hardcover book down so its nearest end is 1.50 m from the wall. 
3. Holding that end down so it 

stays 1.50 m from the wall, put 
several books underneath the 
far end to make a ramp. The 
inclined book should not stick 
up much above the other 
books. Its far end should be 
sitting right on the edge of the 
pile of books (see the photo on 
the right). 

4. Hold the ball at the very top of the ramp you just made and release it. Does it roll the 1.50 m and then 
hit the wall? If not, add more books so that the ramp is steeper, but remember to hold the near end so 
that it stays 1.50 m from the wall. Once the ball rolls the 1.50 m and hits the wall, go to the next step. 

5. Hold the ball at the very top of the ramp and release it. When you see it hit the floor, start your timer. 
When you hear it hit the wall, stop the timer. Record the time you measured. 

6. Repeat step 5 four more times. 
7. Now move the entire ramp so that the near end is 1.00 m from the wall. Make sure that once again, 

the thinnest hardcover book does not stick up much above the other books. Its far end should once 
again be sitting right on the edge of the pile of books so it is at the same height as it was before. 

8. Repeat step 5 a total of five times. 
9. Compute the average of the first five times that you measured. 
10. Divide the distance the ball traveled during that time (1.50 m) by the average time. That is the velocity 

of the ball over those 1.50 m. 
11. Compute the average of the second five times that you measured. 
12. Divide the distance the ball traveled during that time (1.00 m) by the average time. That is the velocity 

of the ball over those 1.00 m. 
13. Compare the two velocities. 
14. Clean up your mess and put everything away. 

pile of books  
thinnest book  

end of thinnest book right on  
the edge of the pile of books. 

1.50 m 
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You might be wondering why I had you repeat your measurements five times and average them. I 
will discuss that in the final section of this chapter. For right now, I want you to concentrate on what 
happened in the experiment. When you held the ball at the top of the ramp, it had a velocity of zero. 
However, when you released it, it began rolling down the ramp. Thus, its velocity began to change, which 
tells you that a force must have been acting on it. The force was gravity, which was pulling the ball down 
the ramp. Once the ball reached the floor, that force could no longer change the ball’s velocity. However, 
the ball already had a lot of velocity from rolling down the ramp, so Newton’s First Law says that it will 
continue rolling with that velocity unless another force acts on it. 

 
Was there another force acting on it? You can answer that question by comparing the two 

velocities you calculated. You kept the ramp the same in both cases, so the velocity the ball had when it hit 
the floor should have been the same in both cases. If no force was acting on the ball, then the velocities 
you calculated should have been the same as well. However, they probably weren’t. Most likely, the first 
velocity (the one calculated with 1.50 m) was lower than the second velocity (calculated with 1.00 m). 
Thus, there was a force acting on the ball. That force, of course, was friction. Friction fought against the 
motion of the ball, slowing it down as it went. The longer the ball rolled, the more friction could fight its 
motion, so the slower the ball rolled. 

 
Did you notice that the ball was slowing down as it rolled on the floor? You might have. In the 

end, it had its highest velocity when it hit the floor, and it had its lowest velocity when it hit the wall. At 
any point in between, its velocity was getting progressively lower. This brings up an important point about 
Equations (1.1) and (1.2). They allow you to calculate the average speed and average velocity over the time 
interval you use. Since the ball was slowing down the entire time in the experiment, the two velocities you 
calculated were somewhere in between the velocity the ball had when it hit the floor and the velocity the 
ball had right before it hit the wall. 

 
In order to be accurate in our description of motion, then, we have to distinguish between the 

ball’s average velocity and its instantaneous velocity. 
 

Average velocity – The average of the velocity over a given time interval 
 

Instantaneous velocity – The velocity at a given instant in time 
 

So if you had a way of measuring the ball’s velocity the very moment that it hit the floor, you would know 
its instantaneous velocity at that moment. You can measure that, but it requires some specialized 
equipment, like a radar gun. You didn’t have that, so the best you could do is measure the ball’s average 
velocity over the time it took to roll from the end of the ramp to the wall. 

 
So in the experiment, the ball’s instantaneous velocity was changing. It increased as it rolled down 

the ramp, and it decreased when it rolled across the floor. When an object’s velocity changes, we say that 
the object is experiencing acceleration. 

 
Acceleration – A change in an object’s velocity 

 
I will give you an equation for calculating acceleration in the next chapter. For right now, I just want you 
to concentrate on what the term means. You have probably used the term before, but as is often the case, 
physicists use it differently from most people. Most people think of acceleration as speeding up. In 
physics, acceleration is any change in an object’s velocity. If an object is speeding up, it is accelerating, but 
if an object is slowing down, it is also accelerating. In your experiment, then, the ball was constantly 
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experiencing acceleration. As the ball rolled down the ramp, the acceleration resulted in it speeding up. As 
it rolled across the floor, the acceleration resulted in the ball slowing down. 
 
 How can you tell whether acceleration slows an object down or speeds it up? It is based on 
direction. Like velocity, acceleration is a vector quantity, so it has a direction. In your experiment, the ball 
was rolling down the ramp, and the acceleration was pointing down the ramp. The direction of the 
acceleration was the same as the direction of the velocity, so the object sped up. When the ball started 
rolling on the floor, the velocity was in the direction of the wall, but the acceleration was in the opposite 
direction. As a result, the object slowed down. This is an important thing to remember. 
 

When acceleration and velocity are in the same direction, an object’s speed increases. 
When acceleration and velocity are in opposite directions, an object’s speed decreases. 

 
You will get more experience with this fact, as well as the distinction between instantaneous and average 
velocity, in the next section. 

  
Comprehension Check 

 
11. Suppose you did one more trial of the experiment, with the end of the ramp only 0.50 m away from 
the wall. Would the average velocity be greater than, less than, or the same as the velocity you measured 
when it was 1.00 m from the wall? 
 
12. A policeman with a radar gun measures a car’s instantaneous velocity to be 29 m/s west. Half a second 
later, he measures it to be 25 m/s west. What is the direction of the car’s acceleration? 
 
 

A Picture Is Worth a Thousand Words 
 

Physicists often use graphs to analyze situations, since they contain a lot of information. Consider, 
for example, the graph below. It is showing you the position of a ball rolling on a track relative to its 
starting position. For this graph, positive means 
north and negative means south. Notice that the 
ball begins rolling north, because its position gets 
larger and more positive. At 60 seconds, the ball’s 
position stops changing, but then at 80 seconds, it 
starts decreasing. That means it is rolling back 
closer to its starting point, so it is now headed 
south. It keeps heading south, and at just over 120 
seconds, its position is 0, which means it is back to 
its starting point. After that, the position keeps 
getting more and more negative, which means it 
keeps traveling south from its starting point. 

 
But let’s look at this graph in a lot more detail. First, remember how we calculate velocity. We take 

the change in position (the displacement) and divide it by the change in time. Think about how that relates 
to the graph. Position is on the y-axis of the graph, and time is on the x-axis. So the change in position is 
the change in the y-axis, which is often called the rise of the graph, and the change in time is the change in 
the x-axis, which is often called the run of the graph. So velocity is the rise of the graph divided by the 
run. Do you remember what that is? It’s the slope of the graph. This is important. 
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The slope of a position versus time graph is the velocity. 
 
Because I want to talk about the graph more, I copied it and put below so you can refer to it easily. 

First, let’s make sure you can read the graph properly. Notice that the lines are pretty far apart, so you can 
estimate in between them. For example, notice where the graph levels out on the y-axis. It is between 40 m 
and 60 m, but it is much closer to 60 m than it is to 40 m. You can estimate between the lines and say that 

it levels off at 55 m. You might go as low as 52 
or as high as 58, but that’s okay. The last 
significant figure is an estimate, so there is 
always error in it. Nevertheless, since you can 
estimate between the lines, the precision is 
generally one decimal place more than the labels 
on the graph. Thus, you can read the y-axis to 
the ones place. The same is true for the x-axis. 
Look at where the graph falls back down to 0 
after it levels out. At what time does that 
happen? It’s between 120 s and 140 s, but much 
closer to 120 s. I would say 123 s.  

 
Now let’s calculate the initial slope. At t = 0 seconds, the position is 0 meters. At t = 6.0x101 s,  

seconds, the position is 55 meters. Why did I use scientific notation for the time? Remember that you can 
read the x-axis to the ones place, so the zero in 60 is significant. I must therefore report it in scientific 
notation to make it significant. From those two points, we can determine the slope. To do that, we take 
the y-value at the beginning and subtract it from the y-value at the end. We then divide that by the end 
time minus the beginning time: 

 

slope ൌ
rise
run

ൌ  
55 m െ  0 m

6.010ଵ s െ  0 s
 ൌ  

55 m
6.010ଵ s

 ൌ  0.92 
m
s

   
 

Since both 55 m and 6.0101 s have two significant figures, the answer must have two. Thus, the average 
velocity of the ball during this time was 0.92 m/s. 
 
 There are a couple of important things to point out here. First, notice that the velocity is positive. 
This means the ball is rolling north, since north was defined as positive. Also, notice that over the time 
interval, the graph is a straight line. What do we know about straight lines? They have a constant slope. Thus, 
the slope would be the same no matter what time interval I used, as long as it was somewhere between 0 
to 60 seconds. So if I calculated the slope from 15-25 seconds, it would still be 0.92 m/s. If I calculated it 
from 16 s to 17 s, it would be 0.92 m/s. What does that tell you? It tells you the average velocity and 
instantaneous velocity are the same during that time interval. 
 
 But what happens at 60 seconds? The slope changes. The graph becomes a horizontal line. What is 
the slope of a horizontal line? It’s 0. Thus, the velocity changes from 0.92 m/s to 0 m/s. This tells you the 
ball experienced an acceleration at 60 seconds. What was the direction of the acceleration? The ball slowed 
down from 0.92 m/s north to zero, so the acceleration was opposite of the velocity. The velocity was 
north (because it was positive), so the acceleration was pointed south. See if you can reason like this by 
studying the following example and solving the problem that follows. 
 

Example 1.7 
 

In the graph shown above, what is the instantaneous velocity at 165 s? 
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Notice that the graph is a straight line from t = 80 s to t = 200 s. Thus, the velocity is constant, and the 
instantaneous velocity is the same as the average velocity, which is given by the slope of the line. I can 
choose any time interval between 80 s and 200 s, but I will use the entire interval. Remember, however, 
that what we read from the graph is precise to the ones place in each case, so I will have to use scientific 
notation for the times: 

 

slope ൌ
rise
run

ൌ  
െ89 m െ  55 m

2.010ଶ s െ  8.010ଵ s
 ൌ  

െ144 m
1.210ଶ s

 ൌ  െ1.2 m/s 

 
Now remember, you might read the graph differently, or you might use a different time interval. Thus, 
your answer might be -1.0 m/s or maybe -1.4 m/s, but that’s okay. There is always error in the last 
significant figure, so from a scientific standpoint, those are all the same answer. If you are having trouble 
understanding the scientific notation at the bottom of the fraction, just convert it into decimal for the 
purpose of doing the math, but then use the scientific notation to determine the significant figures. The 
bottom of the fraction is really 200 s – 80 s, which is 120 s. The scientific notation tells you that the first 
zero in 200 s is significant, and that’s in the tens place. It also tells you the zero in 80s is significant, and it’s 
in the ones place. Thus, the least precise number has its last significant figure in the tens place, so your 
answer must have its last significant figure in the tens place, which 1.2102 m/s does. Because it would still 
have two significant figures if you reported it as 120 m/s, that would be just as good an answer. 
 
We already determined that acceleration occurred at t = 60 s. At what other time does it occur? In 
what direction is it then? 
 
The graph changes slope again at 80 s, so the other acceleration occurs at 8.0×101 s. At that time, the ball 
goes from a velocity of 0 m/s to a velocity of -1.2 m/s, which is 1.2 m/s south. Thus, it sped up going 
south. In order to speed up, acceleration and velocity must be in the same direction, so the acceleration is 
to the south. 
 

  
Comprehension Check 

 
13. For the graph on the right, the positive 

direction is east. 
 
a. Over what time interval is the velocity 

zero?  
 
b. When does the object experience 

acceleration? For each acceleration, 
indicate the direction.  

 
c. What is the instantaneous velocity at  

t = 11.0 seconds?  
 
 
 

To Err Is Human 
 
 Before I finish this chapter, I need to go back to Experiment 1.4 for a moment. In that 
experiment, I had you measure the same thing (the time it took the ball to roll from the end of the ramp to 

‐20

‐10

0

10

20

30

40

50

60

70

0 2 4 6 8 10 12 14 16 18 20

P
os

it
io

n
 (

m
)

Time (s)



26      Discovering Design With Physics 

the wall) five times and average the result. Why did I do that? To reduce experimental error. After all, 
you had to start the timer when the ball hit the floor and stop it when the ball hit the wall. Do you really 
think you started and stopped the timer at the right times? Probably not. You might have anticipated the 
ball rolling off the ramp, which would have caused you to start the timer too soon. You might have heard 
the ball hit the wall but not immediately stopped the timer, causing the timer to stop late. Both of those 
actions would cause the time measured to be too long. If you were late when the ball rolled off and early 
when it hit the wall, the measured time would be too short. Indeed, had you been perfect each time, all five 
measurements would have been the same. Were they? Probably not. 
 
 Since we all make errors when we make measurements, we need some way to reduce the effect of 
those errors. Well, assuming you didn’t make the same mistakes each time you made the measurements, 
some of your times would have been too long, while others would have been too short. By averaging the 
measurements, you can make these mistakes “cancel out,” so that the average is a bit more accurate than 
any given measurement. The more times you make the measurement, the more accurate the average 
becomes. Thus, had you made ten measurements and averaged them, you would have an even more 
accurate average. Depending on the difficulty of the measurement and how accurate you want to be, you 
might do a lot more than ten. Of course, the more measurements you do, the longer the experiment takes, 
so there is a tradeoff. In the experiments you will do for this course, five measurements will be considered 
a pretty good compromise between accuracy and the time it takes to do the experiment. 
 
 In fact, this is why significant figures are so important. They give you an idea of how well you 
know the result. Because of the many sources of error, and because each measurement is limited by the 
instrument with which you make the measurement, the last significant figure always has error in it. Thus, if 
you end up with an answer that is different from someone else’s but only in the last significant figure, it is 
really impossible to tell which answer is correct. Thus, we say that the answers are consistent with one 
another. Had you solved the first part of Example 1.7 and gotten an answer of -1.4 m/s or -1.0 m/s, it 
would be considered just as correct as the answer given above: -1.2 m/s, because there is always error in 
the last significant figure. 
 
 You have to be careful, however. This kind of reasoning applies only to random errors, which 
cause the result to sometimes be larger and sometimes be smaller than the actual answer. There are also 
systematic errors, which cause the result to be wrong in the same way all the time. Suppose your timer 
wasn’t working properly and always measured a time that was shorter than the actual time. That would be 
a systematic error, and no amount of averaging will get rid of that. 
 

Because there are so many sources of error in experiments, and because science is fundamentally 
based on experiments, you have to understand that anything we learn in science has the possibility of being 
wrong, since the experiments we base our learning on can contain systematic errors. As a result: 

 
Science cannot prove anything. 

 

Science can produce a lot of evidence that can allow you to believe something with a lot of confidence, but 
that doesn’t mean it’s absolutely true. For example, even though Newton’s Laws (the first of which you’ve 
already learned) have an enormous amount of evidence to back them up, we don’t know for certain that they 
are true, because the evidence is based on experiments, which might all be in error. In fact, we already 
know that Newton’s Laws are not true when we deal with atoms and molecules. Thus, please understand 
that while science is incredibly useful and can allow you to learn a lot about God’s creation, it is not a 
source of absolute truth! 
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Sample Calculations for Experiment 1.4 
 
Times it took for the ball to roll 1.50 m: 1.67 s, 1.81 s, 1.79 s, 1.88 s, 1.61 s 
Times it took for the ball to roll 1.00 m: 0.84 s, 0.80 s, 0.91 s, 0.87 s, 0.81 s 
 
Average time it took to roll 1.50 m: (1.67 s + 1.81 s + 1.79 s + 1.88 s + 1.61 s) ÷ 5 = 8.76 s ÷ 5 = 1.75 s 
 
Significant figures explanation: When you add numbers, you look at decimal place. Each time has its last 
significant figure in the hundredths place, so the answer must as well. That’s why it is 8.76 s.  
 
When you divide, you count significant figures. 8.76 s has three, but the 5 is exact, because you performed 
exactly 5 trials, so it has infinite significant figures. That means the lowest number of significant figures is 
three, so the answer must have three. That’s why it is 1.75 s 
 
Velocity as it rolled 1.50 m: 1.50 m  ÷ 1.75 s = 0.857 m/s 
 
Significant figures explanation: When you divide, you count significant figures. 1.50 m has three, as does 
1.75 s, so the answer must have three as well. That’s why it is 0.857 m/s. 
 
Average time it took to roll 1.00 m: (0.84 s + 0.80 s + 0.91 s + 0.87 s + 0.81 s) ÷ 5 = 4.23 s ÷ 5 = 0.846 s 
 
Significant figures explanation is the same as for the first average. 
 
Velocity as it rolled 1.00 m: 1.00 m  ÷ 0.846 s = 1.18 m/s 
 
Significant figures explanation is the same as for the velocity. 
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Solutions to the “Comprehension Check” Questions 
 
1. We need to divide the numbers. 
 

Density = 3.40102 g ÷ 1.21510-4 m3 = 2.798353106 
୥

୫య 
 

You should learn how to input scientific notation into your calculator, since you will have to do that later 
on. For now, however, you could just convert to their decimal equivalents (340 g and 0.0001215 m3) and 
put those numbers into your calculator. Remember, however, that 3.40102 g has three significant figures, 
while 1.21510-4 m3 has four. In multiplication and division, you report your answer with the least number 
of significant figures. Thus, the answer is 2.80106 g/m3. Notice that the unit, which must be included in 
the answer, is determined like using variables in algebra. Since x ÷ y = x/y, g  ÷ m3 = g/m3. 
 
2. We start by getting the conversion relationship. Since “m” means “milli,” which is 0.001: 
 

1 mg = 0.001 g 
 
Notice how the left side of the conversion relationship contains the unit with the prefix (mg), while the 
right side has the prefix’s definition (0.001) followed by the base unit (g). Now we put the original 
measurement over 1 to make it a fraction and multiply by the conversion relationship so that g cancels: 
 

0.0231 g
1

ൈ
1 mg

0.001 g
 ൌ  23.1 mg 

 
Since the original measurement has three significant figures and conversion relationships have infinite 
significant figures, the answer must have three. That’s why the answer is 23.1 mg.  
 
3. We start by defining a direction. I will define west as positive, which makes east negative. Thus, the first 
part of his trip results in a displacement of 570 m, while the second part gives a displacement of -310 m. 
That means 

Total Displacement = 570 m + -310 m = 260 m 
 
Since I defined west as positive, that answer is good enough, because it means 260 m west. Had you 
defined east as positive, your answer would have been -260 m, which would also mean 260 m west. From 
a significant figures point of view, both numbers have their last significant figure in the tens place (the 
zeroes are not significant because they are not to the right of the decimal), so the answer must also have its 
last significant figure in the tens place, which it does. 
 
4. Speed is the change in distance over the change in time. The total distance traveled was: 
 

Total Distance ൌ  4.61 km ൅  4.92 km ൌ  9.53 km 
 

speed ൌ  
∆d
∆t

 ൌ  
9.53 km
0.732 hr

  ൌ  13.0 
km
hr

 

 
Notice that since both distances have their last significant figure in the hundredths place, the total distance 
must have its last significant figure in the hundredths place. When calculating speed, however, we are 
dividing, so we count significant figures. Both 9.53 km and 0.732 hr have three significant figures, so the 
answer must have three. Thus, 13 km/hr is not correct. It is 13.0 km/hr. 
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 On the other hand, velocity is the change in displacement over the change in time. So we must first 
determine displacement, which requires defining a direction. I will define east as positive. 
 

Total Displacement ൌ  4.61 km ൅  െ4.92 km ൌ  െ0.31 km 
 

𝐯 ൌ  
∆𝐱
∆t

 ൌ  
െ0.31 km 
0.732 hr

  ൌ  െ0.42 
km
hr

  

  
That means his velocity was -0.42 km/hr, which could also be reported as 0.42 km/hr west. Once again, 
both displacements had their last significant figure in the hundredths place, so the sum must have its last 
significant figure in the hundredths place. However, when you divide, you count significant figures. Since 
0.31 km has only two significant figures, the velocity can have only two. 
 
5. Relative to the runner in the lead means we are going to treat the lead runner as the reference. Defining 
westward motion as positive, then, both runners have positive velocities. 
 

Relative velocity ൌ  Velocity of moving object െ  Velocity of reference object 
 

Relative velocity ൌ  2.8 
m
s
െ  2.9 

m
s

 ൌ  െ0.1 
m
s

  

 
Since we are subtracting and both numbers have their last significant figure in the tenths place, the answer 
must be reported to the tenths place as well. Thus, relative to the lead runner, the second-place runner has 
a velocity of 0.1 m/s east. In other words, the second-place runner is moving away from the lead runner. 
Once again, since we defined direction, we could have just left the answer as -0.1 m/s. 
 
6. The first thing we should notice is that the time unit in the velocity is seconds, but the time is given in 
minutes. Thus, we must convert. 

 
4.0 min

1
  

60 s
1 min

 ൌ  240 s 
 

Remember, conversion factors are exact, so they have an infinite number of significant figures. That 
means we are limited to two significant figures because of the 4.0 min. Now we can use Equation (1.2), 
defining east as positive:   

𝐯 ൌ  
∆𝐱
∆t

 

 

3.45 
m
s

  ൌ  
∆𝐱

240 s
 

 

We can now use algebra to solve for Δx: 
 

∆𝐱  ൌ  3.45
m
s
 240 s ൌ 830 m 

 

Since east was defined as positive, the displacement is 830 m east. 
 
7. Even though both trains are moving, we can treat one as sitting still, and the other as traveling with the 
trains’ relative velocity. Let’s treat the eastbound train as stationary, and let’s define west as positive. That 
makes the eastbound train’s velocity negative, and the other train’s velocity positive: 
 

Relative velocity ൌ  Velocity of moving object െ  Velocity of reference object 
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Relative velocity ൌ  19 
m
s

 െ  െ23 
m
s

 ൌ  42 
m
s

 
 

 So this situation is equivalent to the eastbound train car sitting still, and the other train approaching 
it at a velocity of 42 m/s west. To collide, then, the westbound train must experience a displacement of 
16.5 km in the positive direction (west). That’s not consistent with the unit in velocity, however, so we 
need to convert: 
 

 
16.5 km

1
  

1,000 m
1 km

 ൌ  16,500 𝑚 
 

Now we can use Equation (1.2): 

𝐯 ൌ  
∆𝐱
∆t

 

 

42 
m
s

  ൌ  
16,500 m

∆t
 

We can now use algebra to solve for Δt: 
 

∆t ൌ
16,500 m

42 m
s

ൌ  390 s 

 
8. You will travel upwards. You were originally coasting along with the plane. When the plane suddenly 
dropped, you continued to move with the velocity you had, so you didn’t drop with it. A seat belt would 
have exerted a force on you to make you drop with the plane. However, without the seat belt, you didn’t 
drop with the plane, so you moved upwards relative to the seat. This actually happened to me once. The 
pilot said that we hit a pocket of low pressure. Fortunately, I was wearing my seatbelt. 
 
9. Block A experienced a weaker frictional force. Without friction, they would move forever. Thus, the one 
that traveled farther was closer to having no friction, so it had weaker friction. 
 
10. It will land in the back of the truck, at the same place from which you shot it. The arrow has the 
truck’s velocity when it is shot, so it will keep that velocity. As long as the truck’s velocity stays constant, 
then, it will simply keep up with the truck as the force from the bow causes its upward velocity to increase 
and then gravity takes over, slowing the arrow and then making it fall. However, there is no force fighting 
against or aiding the velocity it had with the truck, so the arrow keeps that velocity during its entire flight. 
 
11. The average velocity would be greater. Since it doesn’t roll as far, friction can’t slow it down as much, 
so on average, the velocity will be greater. 
 
12. The acceleration is east. The speed is the scalar quantity, and it decreased from 29 m/s to 25 m/s. That 
means velocity and acceleration are in opposite directions. 
 
13. a. From 4.0-7.0 seconds, the line is horizontal, which means zero slope and thus zero velocity. 
 
b. At 4.0 seconds, the acceleration is east. At 7.0 seconds, it is east, and at 12.0 seconds, it is east. 
Remember that the slope tells you the velocity. You can calculate them all of you want, but you don’t need 
to. Rising graphs have positive slopes, and the steeper the rise, the more positive. Falling graphs have 
negative slope, and the steeper the fall, the more negative. So the velocity is negative from 0 s to 4 s, which 
means the velocity is west. It then goes to zero. That means it slowed down. If it was traveling west and 
slowed down, the acceleration is east. At 7 s, the velocity goes from zero to something positive, because 
the graph is rising. Thus, the velocity increased in the positive direction, which means the acceleration is in 
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the positive direction as well. So that means the acceleration is east. At 12 s, it got steeper, which means 
more positive. That means the positive velocity increased, which tells you the acceleration was positive. 
 
c. From 7 s to 12 s, the graph is a straight line, so its slope is the same everywhere. That means you can 
choose any interval from 7 s to 12 s for calculating the slope. I will choose the entire interval, but you can 
choose differently if you want. 
 

slope ൌ
rise
run

ൌ  
2 m െ  െ8 m

12.0 s െ  7.0 s
 ൌ  

1.010ଵ m
5.0 s

 ൌ  2.0 m/s 

 
That means 2.0 m/s east. Since the sign of the direction is given by the problem, you can also report the 
answer as 2.0 m/s, since the positive means east.  
 

For significant figures, remember that you can estimate between the lines to get one more decimal 
place than the label. Thus, you can read the y-axis to the ones place and the x-axis to the tenths place. 
When you subtract, you look at decimal place. The distances both have their last significant figure in the 
ones place, so the difference must as well. Thus, you must report the answer (10 m) so that the zero is 
significant. The only way to do that is with scientific notation. The times both have their last significant 
figure in the tenths place, so the answer must as well. When you divide, you count significant figures. Since 
both the distance and time have two, the answer should have two as well. 
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Review 
 
1. Define the following terms: 
 

a. Vector quantity  
b. Scalar Quantity  
c. Friction  
d. Inertia  
e. Average velocity  
f. Instantaneous velocity  
g. Acceleration 

 
2. You see the following entries in a lab notebook. Indicate what physical quantity was measured in each 
case: 
 

 a. 17 m/s 
 b. 12 inches 
 c. 1.2 km north 
 d. 25 seconds 
 e. 22 miles/hr west 
 
3. You ride your bicycle for 5.2 km west and then turn around and ride it 4.3 km east. What is the total 
distance you traveled? What is the total displacement? 
 
4. Suppose you took 925 seconds to make the trip discussed in problem #3. What was your average speed? 
What was your average velocity? 
 
5. A car is on a highway, traveling at 25 m/s west. A truck is on the same highway, traveling 29 m/s west. 
What is the velocity of the car relative to the truck? What is the velocity of the truck relative to the car? If 
the two vehicles eventually collide, which one was ahead? 
 
6. You are walking with a constant velocity of 1.5 m/s north. If you walk for 15 minutes, what will be your 
displacement? 
 
7. You ride your bicycle with a velocity of 11 m/s west. If you do that until your displacement is 7.8 km 
west, how long will it take you? 
 
8. Two cars start next to one another on a road. One travels at 31 m/s north, while the other travels at  
28 m/s south. How far will they be from each other in 22 minutes? 
 
9. A car is traveling at a constant velocity. Is there a net force acting on it? How would your answer change 
if you only knew it was traveling at a constant speed? 
 
10. A man is riding a horse with a constant velocity, when suddenly, the horse plants its feet and stops. 
When that happens, how will the man move relative to the horse?  
 
11. You are told that object A has much more inertia than object B. If they are both traveling with the 
same velocity, which will be harder to stop? 
 
12. A moving object is experiencing a net force. Is it accelerating or not? 
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Questions 13-17 refer to the graph below, for which the positive direction is east. 

  
 
 

13. At what times does the object in the graph experience an acceleration? What direction is that 
acceleration? 
 
14. During what time interval is the object not moving? 
 
15. During what time interval is the object east of its starting position? For what time interval is it west of 
its starting position? 
 
16. Are the instantaneous and average velocities the same from 2 seconds to 6 seconds? What about from 
14 seconds to 18 seconds? 
 
17. What is the instantaneous velocity at 1 second? 
 
18. An experiment has only random errors in it. One student performs it ten times and averages her 
results. The other does it just one time and reports the result as his final answer. Most likely, which student 
will be more accurate? 
 
19. How would your answer to #18 change if the experiment had systematic errors in it? 

heterogeneous mixture 
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Ignoring air resistance, this skydiver is in free fall. 


